We consider the problem of selecting a set of individuals from a candidate population in order to maximise utility. When the utility function is defined over sets, this raises the question of how to define meritocracy. We define and analyse an appropriate notion of meritocracy derived from the utility function. We introduce the notion of expected marginal contributions of individuals and analyse its links to the underlying optimisation problem, our notion of meritocracy, and other notions of fairness such as the Shapley value. We also experimentally analyse the effect of different policy structures on the utility and meritocracy in a simulated college admission setting including constraints on statistical parity.


翻译:我们考虑从候选人群中选择一组个人以最大限度地发挥效用的问题。当公用事业功能被一连串地界定时,这就提出了如何界定精英制的问题。我们界定和分析了从公用事业功能中产生的适当的精英制概念。我们引入了个人预期的边际贡献的概念,并分析了它与潜在的优化问题、我们的精英制概念以及其他公平概念(如“损耗值”)的联系。我们还实验性地分析了在模拟大学招生时不同政策结构对公用事业和精英制的影响,包括对统计均等的限制。

0
下载
关闭预览

相关内容

专知会员服务
92+阅读 · 2021年6月3日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Optimal Target Shape for LiDAR Pose Estimation
Arxiv
0+阅读 · 2021年9月6日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
5+阅读 · 2018年1月29日
VIP会员
相关VIP内容
专知会员服务
92+阅读 · 2021年6月3日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员