Recommender systems have become a ubiquitous part of modern web applications. They help users discover new and relevant items. Today's users, through years of interaction with these systems have developed an inherent understanding of how recommender systems function, what their objectives are, and how the user might manipulate them. We describe this understanding as the Theory of the Recommender. In this study, we conducted semi-structured interviews with forty recommender system users to empirically explore the relevant factors influencing user behavior. Our findings, based on a rigorous thematic analysis of the collected data, suggest that users possess an intuitive and sophisticated understanding of the recommender system's behavior. We also found that users, based upon their understanding, attitude, and intentions change their interactions to evoke desired recommender behavior. Finally, we discuss the potential implications of such user behavior on recommendation performance.


翻译:推荐人系统已成为现代网络应用程序的无处不在的一部分。 它们帮助用户发现新的相关项目。 今天的用户通过多年与这些系统的互动,已经对推荐人系统如何运作、目标是什么、用户如何操纵这些系统有了内在的理解。 我们把这个理解描述为建议人的理论。 在这项研究中,我们与40个推荐人系统用户进行了半结构性的访谈,以从经验上探索影响用户行为的有关因素。 我们基于对所收集数据的严格专题分析得出的调查结果表明,用户对推荐人系统的行为有着直观和精密的理解。 我们还发现,用户根据其理解、态度和意图改变了他们的互动,以唤起他们想要的推荐人行为。 最后,我们讨论了此类用户行为对推荐人行为的潜在影响。

0
下载
关闭预览

相关内容

专知会员服务
80+阅读 · 2021年7月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
92+阅读 · 2020年2月28日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
专知会员服务
80+阅读 · 2021年7月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员