In the classical selection problem, the input consists of a collection of elements and the goal is to pick a subset of elements from the collection such that some objective function $f$ is maximized. This problem has been studied extensively in the data-mining community and it has multiple applications including influence maximization in social networks, team formation and recommender systems. A particularly popular formulation that captures the needs of many such applications is one where the objective function $f$ is a monotone and non-negative submodular function. In these cases, the corresponding computational problem can be solved using a simple greedy $(1-\frac{1}{e})$-approximation algorithm. In this paper, we consider a generalization of the above formulation where the goal is to optimize a function that maximizes the submodular function $f$ minus a linear cost function $c$. This formulation appears as a more natural one, particularly when one needs to strike a balance between the value of the objective function and the cost being paid in order to pick the selected elements. We address variants of this problem both in an offline setting, where the collection is known a priori, as well as in online settings, where the elements of the collection arrive in an online fashion. We demonstrate that by using simple variants of the standard greedy algorithm (used for submodular optimization) we can design algorithms that have provable approximation guarantees, are extremely efficient and work very well in practice.


翻译:在古典选择问题中,输入包括一个元素的集合,目标是从收集中挑选一组元素,使某些客观功能达到最大化。这个问题已经在数据采集界进行了广泛研究,并具有多种应用,包括在社交网络、团队组建和建议系统的影响最大化。一种特别流行的表达方式,它反映了许多此类应用程序的需要,一种特别流行的表达方式,其目标功能是单调和非负分调的子模块功能。在这些情况下,相应的计算问题可以通过简单的贪婪$(1-\frac{{{1 ⁇ e})美元($-frac{{{{{{{{_e})来解决。在本文中,我们考虑上述表述方式的概括化,目标是优化子模块功能的最大化,美元减去线性成本函数(c$)。这一表述方式显得更自然,特别是当人们需要平衡目标功能的价值和为选择选定要素而支付的费用时。我们在离线的设置中处理该问题的变式,即以离线方式处理问题,即我们所了解的精细的精细的排序方法,在网上的排序中,我们以最精细的排序方式收集,然后以最精细的排序方式展示了标准化的排序,在网上的排序中,我们以最精细的排序中可以展示的排序中,在网上的排序中可以展示的排序中,我们所知道的排序,以展示的排序方式展示的排序。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auction learning as a two-player game
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员