Model order reduction usually consists of two stages: the offline stage and the online stage. The offline stage is the expensive part that sometimes takes hours till the final reduced-order model is derived, especially when the original model is very large or complex. Once the reduced-order model is obtained, the online stage of querying the reduced-order model for simulation is very fast and often real-time capable. This work concerns a strategy to significantly speed up the offline stage of model order reduction for large and complex systems. In particular, it is successful in accelerating the greedy algorithm that is often used in the offline stage for reduced-order model construction. We propose multi-fidelity error estimators and replace the high-fidelity error estimator in the greedy algorithm. Consequently, the computational complexity at each iteration of the greedy algorithm is reduced and the algorithm converges more than 3 times faster without incurring noticeable accuracy loss.
翻译:降级模式通常由两个阶段组成: 离线阶段和在线阶段。 离线阶段是有时需要几个小时才能得出最后降级模式的昂贵部分, 特别是当原始模型非常大或复杂时。 一旦获得降级模式, 查询模拟降级模式的在线阶段非常快, 并且往往可以实时进行。 这项工作涉及一项战略, 以大大加快大型和复杂系统降级模式的离线阶段。 特别是, 它成功地加快了在降级模型建造离线阶段经常使用的贪婪算法。 我们在贪婪算法中提出了多纤维误算器, 并替换了高纤维误算器。 因此, 贪婪算法的每一次迭代的计算复杂性都会减少, 而算法的趋同速度超过3倍, 而不会造成明显的准确性损失。