Bayesian inference can quantify uncertainty in the predictions of neural networks using posterior distributions for model parameters and network output. By looking at these posterior distributions, one can separate the origin of uncertainty into aleatoric and epistemic. We use the joint distribution of predictive uncertainty and epistemic uncertainty to quantify how this interpretation of uncertainty depends upon model architecture, dataset complexity, and data distributional shifts in image classification tasks. We conclude that the origin of uncertainty is subjective to each neural network and that the quantification of the induced uncertainty from data distributional shifts depends on the complexity of the underlying dataset. Furthermore, we show that the joint distribution of predictive and epistemic uncertainty can be used to identify data domains where the model is most accurate. To arrive at these results, we use two common posterior approximation methods, Monte-Carlo dropout and deep ensembles, for fully-connected, convolutional and attention-based neural networks.
翻译:Bayesian 推论可以使用模型参数和网络输出的后表分布来量化神经网络预测中的不确定性。 通过查看这些后表分布,人们可以将不确定性的起源区分为偏向性和偏向性。我们使用预测不确定性和隐喻性不确定性的联合分布来量化不确定性的解读如何取决于模型结构、数据集复杂性和图像分类任务的数据分布变化。我们的结论是,不确定性的起源对每个神经网络都是主观的,对数据分布变化引起的不确定性的量化取决于数据分布变化的复杂性。此外,我们表明,预测性和认知性不确定性的联合分布可以用来确定模型最准确的数据领域。为了取得这些结果,我们使用两种共同的远端近似方法,即蒙特-卡洛辍学和深孔网,用于完全连接的、发动的和以注意力为基础的神经网络。