Hive is the most mature and prevalent data warehouse tool providing SQL-like interface in the Hadoop ecosystem. It is successfully used in many Internet companies and shows its value for big data processing in traditional industries. However, enterprise big data processing systems as in Smart Grid applications usually require complicated business logics and involve many data manipulation operations like updates and deletes. Hive cannot offer sufficient support for these while preserving high query performance. Hive using the Hadoop Distributed File System (HDFS) for storage cannot implement data manipulation efficiently and Hive on HBase suffers from poor query performance even though it can support faster data manipulation.There is a project based on Hive issue Hive-5317 to support update operations, but it has not been finished in Hive's latest version. Since this ACID compliant extension adopts same data storage format on HDFS, the update performance problem is not solved. In this paper, we propose a hybrid storage model called DualTable, which combines the efficient streaming reads of HDFS and the random write capability of HBase. Hive on DualTable provides better data manipulation support and preserves query performance at the same time. Experiments on a TPC-H data set and on a real smart grid data set show that Hive on DualTable is up to 10 times faster than Hive when executing update and delete operations.


翻译:Hive 是Hadoop 生态系统中最成熟和最流行的数据仓库工具, 提供了 SQL 类界面。 它被许多互联网公司成功使用, 并展示了它在传统行业中大数据处理的价值。 但是, Smart Grid 应用程序中的企业大型数据处理系统通常需要复杂的商业逻辑, 并涉及许多数据操作操作, 如更新和删除。 Hive 无法在保存高查询性能的同时为这些操作提供足够支持。 使用 Hadoop 分布式文件系统( HDFS) 进行存储无法高效地执行数据操作, 而 HBase 上 Hive 的查询性能也很差, 尽管它能够支持更快的数据操作。 有一个基于 Hive 问题 Hive-5317 的项目支持更新操作, 但是它还没有在 Hive 的最新版本中完成 。 由于 ACID 符合要求的扩展应用在 HDFS 上采用相同的数据存储格式, 更新性能问题无法解决 。 在本文中, 我们建议使用一个混合存储模式, 将 HDFS 和 HBase 的随机写能力结合起来。 Hivelock 提供更好的数据操作支持, 并在 10 服务器上进行快速测试 。

0
下载
关闭预览

相关内容

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
已删除
生物探索
3+阅读 · 2018年2月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年4月5日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
9+阅读 · 2018年1月30日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
已删除
生物探索
3+阅读 · 2018年2月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员