In the absence of governing equations, dimensional analysis is a robust technique for extracting insights and finding symmetries in physical systems. Given measurement variables and parameters, the Buckingham Pi theorem provides a procedure for finding a set of dimensionless groups that spans the solution space, although this set is not unique. We propose an automated approach using the symmetric and self-similar structure of available measurement data to discover the dimensionless groups that best collapse this data to a lower dimensional space according to an optimal fit. We develop three data-driven techniques that use the Buckingham Pi theorem as a constraint: (i) a constrained optimization problem with a non-parametric input-output fitting function, (ii) a deep learning algorithm (BuckiNet) that projects the input parameter space to a lower dimension in the first layer, and (iii) a technique based on sparse identification of nonlinear dynamics (SINDy) to discover dimensionless equations whose coefficients parameterize the dynamics. We explore the accuracy, robustness and computational complexity of these methods as applied to three example problems: a bead on a rotating hoop, a laminar boundary layer, and Rayleigh-B\'enard convection.
翻译:在没有治理方程式的情况下,维量分析是提取洞见和在物理系统中找到对称性的一种强有力的技术。考虑到测量变量和参数,白金汉皮理论为寻找一系列跨越解决方案空间的无维组提供了程序,尽管这一组并不独特。我们建议采用现有测量数据的对称和自相类似结构的自动化方法,以发现无维的群体,将这些数据按照最佳性能将数据崩溃到低维空间。我们开发了三种由数据驱动的技术,将Buckingham Pi 理论作为制约手段:(一) 使用非参数输入-输出安装功能的有限优化问题,(二) 深度学习算法(BuckiNet),将输入参数空间投射到第一层的较低维度,(三) 以稀疏辨非线性动态(SINDIy)为基础的技术,以发现其系数对动态进行参数比较的无维度方程式。我们探索这些方法的准确性、稳健性和计算复杂性,并应用于三个示例:(二) 正在旋转的滚动的滚动式滚动图层和平质图层。