We consider concept generalization at a large scale in the diverse and natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated and focus on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up, and the $complexity$ of concepts becomes diverse. Specifically, at the $representational \ level$, we seek to answer how the complexity varies when a visual concept is mapped to the representation space. Prior psychology literature has shown that two types of complexities (i.e., subjective complexity and visual complexity) (Griffiths and Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun and Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm the following observation: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the $computational \ level$, we aim to answer how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in the rule-based generalization, while the trend is the opposite in the similarity-based generalization.
翻译:我们考虑在多样化和自然视觉频谱中大规模地概括概念。 成熟的计算模式( 以规则为基础或相似性为基础)主要被孤立地研究,并侧重于封闭和抽象的问题空间。 在这项工作中,当问题空间扩大时,我们研究这两种模式,而概念的美元复杂度则变得多样化。 具体地说,在美元代表水平上,我们试图回答当将视觉概念映射到代表空间时,复杂性是如何不同的。 以前的心理学文献表明,两种类型的主观复杂性( 主观复杂性和视觉复杂性)( 格里菲思和Tenenenenbaum, 2003年) 建立了一种反向-U关系( Donderi, 2006年; 太阳和Firestone, 2021年)。 当问题空间空间扩大时,我们研究这两种模式,当问题空间扩大,而概念的美元复合性变得多样化。 我们计算了以下的观察意见: 模型使用高RoA的属性来描述视觉概念,描述的长度与低视觉复杂性的递增关系。 在 美元代表水平上, 我们的目标是解解说, 代表的复杂度在直观规则和直观的相对的直观结构前的直观结构上, 向前直观世界的直观显示的直观结构之间的变化是相对直观, 。 我们的直观 直观 直观 直观 直观 直观 直观 直观 直观 直观 直观 直观 直观 直观 直观 。