User queries for a real-world dialog system may sometimes fall outside the scope of the system's capabilities, but appropriate system responses will enable smooth processing throughout the human-computer interaction. This paper is concerned with the user's intent, and focuses on out-of-scope intent classification in dialog systems. Although user intents are highly correlated with the application domain, few studies have exploited such correlations for intent classification. Rather than developing a two-stage approach that first classifies the domain and then the intent, we propose a hierarchical multi-task learning approach based on a joint model to classify domain and intent simultaneously. Novelties in the proposed approach include: (1) sharing supervised out-of-scope signals in joint modeling of domain and intent classification to replace a two-stage pipeline; and (2) introducing a hierarchical model that learns the intent and domain representations in the higher and lower layers respectively. Experiments show that the model outperforms existing methods in terms of accuracy, out-of-scope recall and F1. Additionally, threshold-based post-processing further improves performance by balancing precision and recall in intent classification.


翻译:用户对真实世界对话系统的查询有时可能不属于系统能力的范围,但适当的系统反应将使整个人-计算机互动能够顺利处理。本文件关注用户的意图,侧重于对话系统中的范围外意图分类。虽然用户的意图与应用领域密切相关,但很少有研究利用这种关联来进行意图分类。我们建议采用基于同时对域和意图进行分类的联合模式的等级化多任务学习方法,而不是先对域进行分类,然后对意图进行分级。拟议方法的新颖之处包括:(1) 在联合建模域和意图分类中共享受监督的外视信号,以取代两阶段管道;(2) 采用等级模式,分别了解上层和下层的意图和域表示方式。实验表明,该模型在准确性、范围外回顾和F1方面优于现有方法。此外,基于门槛的后处理通过平衡精确性和意图分类的回顾,进一步提高了业绩。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
12+阅读 · 2019年2月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员