From ecology to atmospheric sciences, many academic disciplines deal with data characterized by intricate spatio-temporal complexities, the modeling of which often requires specialized approaches. Generative models of these data are of particular interest, as they enable a range of impactful downstream applications like simulation or creating synthetic training data. Recent work has highlighted the potential of generative adversarial nets (GANs) for generating spatio-temporal data. A new GAN algorithm COT-GAN, inspired by the theory of causal optimal transport (COT), was proposed in an attempt to better tackle this challenge. However, the task of learning more complex spatio-temporal patterns requires additional knowledge of their specific data structures. In this study, we propose a novel loss objective combined with COT-GAN based on an autoregressive embedding to reinforce the learning of spatio-temporal dynamics. We devise SPATE (spatio-temporal association), a new metric measuring spatio-temporal autocorrelation by using the deviance of observations from their expected values. We compute SPATE for real and synthetic data samples and use it to compute an embedding loss that considers space-time interactions, nudging the GAN to learn outputs that are faithful to the observed dynamics. We test this new objective on a diverse set of complex spatio-temporal patterns: turbulent flows, log-Gaussian Cox processes and global weather data. We show that our novel embedding loss improves performance without any changes to the architecture of the COT-GAN backbone, highlighting our model's increased capacity for capturing autoregressive structures. We also contextualize our work with respect to recent advances in physics-informed deep learning and interdisciplinary work connecting neural networks with geographic and geophysical sciences.


翻译:从生态学到大气科学,许多学科涉及以复杂的时空复杂性为特征的数据,其建模往往需要专门的方法。这些数据的生成模型特别令人感兴趣,因为它们能够产生一系列影响深远的下游应用,如模拟或合成培训数据。最近的工作突出了生成时空数据的基因化对抗网(GANs)的潜力。在因果最佳运输理论(COT)的启发下,提出了一个新的GAN算法COT-GAN,以更好地应对这一挑战。然而,学习更复杂的时空模式的任务需要对其具体数据结构的更多知识。在本研究中,我们提出与COT-GAN相结合的新的损失目标,其基础是自动递增嵌入,以强化对时空时空动态数据的学习。我们设计了SPATE(Spatio-时空联系),一个新的测量空间-时空流动(COutrial-deal-deal-deal-devoorcl)的模型, 利用从预期值的观测数据中获取任何观测结果,从而测量到深度-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直流-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-我们-在-直系-直系-直系-直系-直系-在-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
151+阅读 · 2020年12月30日
专知会员服务
109+阅读 · 2020年5月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年5月20日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
4+阅读 · 2017年12月25日
VIP会员
Top
微信扫码咨询专知VIP会员