With information consumption via online video streaming becoming increasingly popular, misinformation video poses a new threat to the health of the online information ecosystem. Though previous studies have made much progress in detecting misinformation in text and image formats, video-based misinformation brings new and unique challenges to automatic detection systems: 1) high information heterogeneity brought by various modalities, 2) blurred distinction between misleading video manipulation and ubiquitous artistic video editing, and 3) new patterns of misinformation propagation due to the dominant role of recommendation systems on online video platforms. To facilitate research on this challenging task, we conduct this survey to present advances in misinformation video detection research. We first analyze and characterize the misinformation video from three levels including signals, semantics, and intents. Based on the characterization, we systematically review existing works for detection from features of various modalities to techniques for clue integration. We also introduce existing resources including representative datasets and widely used tools. Besides summarizing existing studies, we discuss related areas and outline open issues and future directions to encourage and guide more research on misinformation video detection. Our corresponding public repository is available at https://github.com/ICTMCG/Awesome-Misinfo-Video-Detection.
翻译:随着通过在线视频流流的信息消费越来越受欢迎,错误信息视频对在线信息生态系统的健康构成新的威胁。虽然先前的研究在发现文字和图像格式中的错误信息方面取得了很大进展,但基于视频的错误信息给自动检测系统带来了新的和独特的挑战:(1) 各种模式带来的高度信息差异,(2) 误导性视频操纵和无处不在的艺术视频编辑之间的模糊区别,(3) 由于在线视频平台上的建议系统具有主导作用,误导性信息传播的新模式日益受到欢迎。为了便利对这项具有挑战性的任务进行研究,我们进行了这次调查,以展示错误视频检测研究的进展。我们首先从三个层面分析和定性错误视频视频视频视频,包括信号、语义和意图。我们根据特征特征,系统地审查从各种模式特征到线索整合技术的现有检测工作。我们还介绍了现有资源,包括有代表性的数据集和广泛使用的工具。除了概述现有的研究外,我们还讨论相关领域,并概述公开问题和未来的方向,以鼓励和指导对错误视频检测进行更多的研究。我们相应的公共储存库可在https://github.com/Awesome-Mis-infintoryment。