Diffusion models are a class of deep generative models that have shown impressive results on various tasks with a solid theoretical foundation. Despite demonstrated success than state-of-the-art approaches, diffusion models often entail costly sampling procedures and sub-optimal likelihood estimation. Significant efforts have been made to improve the performance of diffusion models in various aspects. In this article, we present a comprehensive review of existing variants of diffusion models. Specifically, we provide the taxonomy of research in diffusion models and categorize them into three types: sampling-efficiency enhancement, likelihood-maximization enhancement, and data-generalization enhancement. We also introduce the other generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models) and discuss the connections between diffusion models and these generative models. Then we review the applications of diffusion models, including computer vision, natural language processing, temporal data modeling, multi-modal learning, robust learning, molecular graph modeling, material design, and inverse problem solving. Furthermore, we propose new perspectives pertaining to the development of generative models. Github: https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy.
翻译:传播模型是一种深层次的基因化模型,在各种任务上具有坚实的理论基础,显示了令人印象深刻的成果。尽管比最先进的方法取得了显著的成功,但传播模型往往需要花费昂贵的取样程序和次最佳的可能性估计。已经作出了重大努力来提高扩散模型各方面的性能。在本条中,我们对现有传播模型的变种进行了全面审查。具体地说,我们提供了传播模型研究分类,并将其分为三类:抽样效率提高、可能性-最大化增强和数据一般化增强。我们还介绍了其他基因化模型(例如变异自动组、基因对抗网络、正常化流动、自动递增模型和能源模型),并讨论了传播模型与这些变种模型之间的联系。然后我们审查了传播模型的应用,包括计算机视觉、自然语言处理、时间数据模型、多式学习、强有力学习、分子图解模型、材料设计以及反向问题解决。此外,我们提出了与基因模型发展有关的新观点:AGIUB/ROBPA。