Here, we report a case study implementation of reinforcement learning (RL) to automate operations in the scanning transmission electron microscopy (STEM) workflow. To do so, we design a virtual, prototypical RL environment to test and develop a network to autonomously align the electron beam without prior knowledge. Using this simulator, we evaluate the impact of environment design and algorithm hyperparameters on alignment accuracy and learning convergence, showing robust convergence across a wide hyperparameter space. Additionally, we deploy a successful model on the microscope to validate the approach and demonstrate the value of designing appropriate virtual environments. Consistent with simulated results, the on-microscope RL model achieves convergence to the goal alignment after minimal training. Overall, the results highlight that by taking advantage of RL, microscope operations can be automated without the need for extensive algorithm design, taking another step towards augmenting electron microscopy with machine learning methods.
翻译:在此,我们报告了一个实施强化学习(RL)的案例研究,目的是将扫描传输电子显微镜(STEM)工作流程中的操作自动化。为此,我们设计了一个虚拟的、原型RL环境,测试和开发一个网络,在事先不知情的情况下自动对准电子光束。我们使用这个模拟器,评估环境设计和算法超光速参数对校准精确度和学习趋同度的影响,在宽广的超光谱空间显示出强大的趋同力。此外,我们还在显微镜上安装了一个成功的模型,以验证该方法,并展示设计适当的虚拟环境的价值。根据模拟结果,显微镜RL模型在最低限度的培训后与目标一致。总体而言,结果突出表明,通过利用RL,显微镜操作可以自动化,而不需要广泛的算法设计,在用机器学习方法加强电子显微镜方面又迈出了一步。