Tensor contraction operations in computational chemistry consume significant fractions of computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. The TAMM framework decouples the specification of the computation and the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM whereas high-performance computing developers can focus on various optimizations on the underlying constructs such as efficient data distribution, optimized scheduling algorithms, efficient use of intra-node resources (e.g., GPUs). The modular structure of TAMM allows it to be extended to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to sustainable development of tensor contraction-based methods in computational chemistry applications. We present case studies that highlight the ease of use as well as the performance and productivity gains compared to other implementations.
翻译:计算化学的缩缩操作在大型计算平台上花费了大量的计算时间。在描述电子结构理论时,大规模使用大型多维变压器之间的电压收缩,促使针对不同计算平台制定了多个高代数框架。本文介绍多种体方法Tensor代数(TAMM),这是可缩放计算化学方法的生产和可缩放性开发框架。TAMM框架分解了现有高性能计算系统计算和实施这些操作的规格。根据这一设计选择,科学应用开发者(主要科学家)可以侧重于使用TAMM提供的高压代数界面的算法要求,而高性能计算开发者可以侧重于对以下基本结构的各种优化,如高效的数据分配、优化排期算法、高效使用内可缩放性化学资源(如GPUs)。TAM的模块结构允许将其扩大,以支持不同的高性能计算结构,并纳入新的算法进步。我们描述TAMM框架和高性能计算界面的计算方法,作为可持续的数据分配方法,我们将当前的高效化模型应用方法作为可持续的磁化分析方法。