We consider the optimization problem of maximizing the $k$-th Laplacian eigenvalue, $\lambda_{k}$, over flat $d$-dimensional tori of fixed volume. For $k=1$, this problem is equivalent to the densest lattice sphere packing problem. For larger $k$, this is equivalent to the NP-hard problem of finding the $d$-dimensional (dual) lattice with longest $k$-th shortest lattice vector. As a result of extensive computations, for $d \leq 8$, we obtain a sequence of flat tori, $T_{k,d}$, each of volume one, such that the $k$-th Laplacian eigenvalue of $T_{k,d}$ is very large; for each (finite) $k$ the $k$-th eigenvalue exceeds the value in (the $k\to \infty$ asymptotic) Weyl's law by a factor between 1.54 and 2.01, depending on the dimension. Stationarity conditions are derived and numerically verified for $T_{k,d}$ and we describe the degeneration of the tori as $k \to \infty$.
翻译:我们考虑的是,在最大范围内实现美元值最高值最高值最高值的优化问题。 对于美元=1美元,这个问题相当于最稠密的拉蒂球包装问题。对于更大的美元,这相当于寻找美元值最高值最高值(dual)的拉蒂矢量最高值最高值最高值(dual)的NP硬性问题。由于对美元值最高值最高值最高值为8美元(leq 8美元)进行大量计算,我们获得一个单数序列,每卷1美元,每卷1美元=1美元,相当于美元值最高值最高值的拉蒂球体包装问题。对于每个(fite),这相当于寻找美元值最高值最高值(dual)的美元值最高值(dulek),每卷1美元=8美元(leq),每卷1美元为1美元,每卷1美元,每卷1美元=1美元,例如,每卷1美元值最高值最高值为1美元,相当于美元值的拉普拉蒂亚电子元值。 对于每个($),每卷值(k)价值最高值最高值为1美元,每个(k)超过价值最高值值值值值值值值值值值(k)。