Lattice structures have been widely used in various applications of additive manufacturing due to its superior physical properties. If modeled by triangular meshes, a lattice structure with huge number of struts would consume massive memory. This hinders the use of lattice structures in large-scale applications (e.g., to design the interior structure of a solid with spatially graded material properties). To solve this issue, we propose a memory-efficient method for the modeling and slicing of adaptive lattice structures. A lattice structure is represented by a weighted graph where the edge weights store the struts' radii. When slicing the structure, its solid model is locally evaluated through convolution surfaces and in a streaming manner. As such, only limited memory is needed to generate the toolpaths of fabrication. Also, the use of convolution surfaces leads to natural blending at intersections of struts, which can avoid the stress concentration at these regions. We also present a computational framework for optimizing supporting structures and adapting lattice structures with prescribed density distributions. The presented methods have been validated by a series of case studies with large number (up to 100M) of struts to demonstrate its applicability to large-scale lattice structures.


翻译:在添加剂制造的各种应用中,由于物理特性的优越性,拉蒂结构被广泛用于添加剂制造的多种应用中。如果以三角网状结构为模型,一个具有大量柱状结构的拉蒂结构将消耗大量内存。这阻碍了在大规模应用中使用拉蒂结构(例如,设计具有空间分级材料特性的固态内结构);为了解决这个问题,我们提出了一个用于模拟和剪裁适应性拉蒂结构的记忆效率方法。一个拉蒂结构以加权图为代表,边重储存结构的弧形结构。在切除结构时,其固态模型将在当地通过卷动表面和流态方式加以评估。因此,只需要有限的内存来生成制造工具路径。此外,使用卷积表面可以导致在结构交叉处进行自然混合,从而避免这些地区的压力集中。我们还提出了一个计算框架,用于优化支持结构,并用规定的密度分布来改造拉蒂结构。所提出的方法已经通过一系列的案例研究得到验证(通过大尺度的大小结构)的论证。

0
下载
关闭预览

相关内容

java开发框架
专知会员服务
32+阅读 · 2021年3月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
308+阅读 · 2020年11月26日
专知会员服务
52+阅读 · 2020年11月3日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年6月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年6月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员