Many different technologies are used to detect pests in the crops, such as manual sampling, sensors, and radar. However, these methods have scalability issues as they fail to cover large areas, are uneconomical and complex. This paper proposes a crowdsourced based method utilising the real-time farmer queries gathered over telephones for pest surveillance. We developed data-driven strategies by aggregating and analyzing historical data to find patterns and get future insights into pest occurrence. We showed that it can be an accurate and economical method for pest surveillance capable of enveloping a large area with high spatio-temporal granularity. Forecasting the pest population will help farmers in making informed decisions at the right time. This will also help the government and policymakers to make the necessary preparations as and when required and may also ensure food security.


翻译:使用许多不同的技术来探测作物中的害虫,例如人工取样、传感器和雷达,然而,这些方法具有可扩缩性问题,因为它们没有覆盖大片地区,因此不经济,很复杂。本文建议采用以多方联动为基础的方法,利用通过电话收集的实时农民问询来进行虫害监测。我们制定了数据驱动战略,方法是汇总和分析历史数据,以寻找模式,并在今后了解虫害的发生情况。我们表明,这可以是一种准确而经济的虫害监测方法,能够覆盖大片地区,高时粒度高。预测害虫人口将有助于农民在正确的时间做出知情的决定。这也将有助于政府和决策者根据需要和需要做必要的准备,并可能确保粮食安全。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
已删除
将门创投
5+阅读 · 2017年11月20日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
已删除
将门创投
5+阅读 · 2017年11月20日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员