Background: Survival analysis concerns the study of timeline data where the event of interest may remain unobserved (i.e., censored). Studies commonly record more than one type of event, but conventional survival techniques focus on a single event type. We set out to integrate both multiple independently censored time-to-event variables as well as missing observations. Methods: An energy-based approach is taken with a bi-partite structure between latent and visible states, commonly known as harmoniums (or restricted Boltzmann machines). Results: The present harmonium is shown, both theoretically and experimentally, to capture non-linear patterns between distinct time recordings. We illustrate on real world data that, for a single time-to-event variable, our model is on par with established methods. In addition, we demonstrate that discriminative predictions improve by leveraging an extra time-to-event variable. Conclusions: Multiple time-to-event variables can be successfully captured within the harmonium paradigm.
翻译:背景:生存分析涉及研究时间期限数据,而关注事件可能仍然得不到观察(即被审查)。研究通常记录不止一种事件,但常规生存技术侧重于单一事件类型。我们着手将多个独立审查的时间到活动变量和缺失的观测结合起来。方法:以能源为基础的方法在潜在和可见状态(通常称为“和谐”(或限制使用的布尔茨曼机器))之间采用双方结构。结果:从理论上和实验上看,目前的和谐显示在不同的时间记录之间可以捕捉非线性模式。我们用真实世界数据来说明,对于单一的时间到事件变量来说,我们的模式与既定方法相同。此外,我们证明,通过利用额外的时间到活动变量,歧视性预测会有所改进。结论:多种时间到活动变量可以在和谐模式中成功捕捉。