With the outbreak of the Covid-19 virus, the activity of users on Twitter has significantly increased. Some studies have investigated the hot topics of tweets in this period; however, little attention has been paid to presenting and analyzing the spatial and temporal trends of Covid-19 topics. In this study, we use the topic modeling method to extract global topics during the nationwide quarantine periods (March 23 to June 23, 2020) on Covid-19 tweets. We implement the Latent Dirichlet Allocation (LDA) algorithm to extract the topics and then name them with the "reopening", "death cases", "telecommuting", "protests", "anger expression", "masking", "medication", "social distance", "second wave", and "peak of the disease" titles. We additionally analyze temporal trends of the topics for the whole world and four countries. By analyzing the graphs, fascinating results are obtained from altering users' focus on topics over time.
翻译:随着Covid-19病毒的爆发,Twitter用户的活动显著增加。一些研究调查了这段时期推文的热题;然而,很少注意介绍和分析Covid-19论题的时空趋势。在本研究中,我们使用主题模型方法,在全国范围检疫期间(3月23日至6月23日,2020年)在Covid-19推文上提取全球专题。我们采用Litetent Dirichlet分配算法(LDA)来提取这些专题,然后用“重新开放”、“死亡案例”、“电子通勤”、“质询”、“愤怒表达”、“质询”、“质询”、“制造”、“医学”、“社会距离”、“第二波”和“强调疾病”标题来命名这些专题。我们进一步分析了全世界和四个国家的这些专题的时间趋势。通过分析图表,从改变用户对专题的注意力中取得了令人感兴趣的结果。