Point cloud semantic segmentation from projected views, such as range-view (RV) and bird's-eye-view (BEV), has been intensively investigated. Different views capture different information of point clouds and thus are complementary to each other. However, recent projection-based methods for point cloud semantic segmentation usually utilize a vanilla late fusion strategy for the predictions of different views, failing to explore the complementary information from a geometric perspective during the representation learning. In this paper, we introduce a geometric flow network (GFNet) to explore the geometric correspondence between different views in an align-before-fuse manner. Specifically, we devise a novel geometric flow module (GFM) to bidirectionally align and propagate the complementary information across different views according to geometric relationships under the end-to-end learning scheme. We perform extensive experiments on two widely used benchmark datasets, SemanticKITTI and nuScenes, to demonstrate the effectiveness of our GFNet for project-based point cloud semantic segmentation. Concretely, GFNet not only significantly boosts the performance of each individual view but also achieves state-of-the-art results over all existing projection-based models. Code is available at \url{https://github.com/haibo-qiu/GFNet}.
翻译:从射线视图和鸟眼视图(BEV)等预测观点中得出的点云的语义分解,已经深入调查了各种不同的观点,捕捉了点云的不同信息,因而相互补充。然而,最近基于预测的点云语义分解方法通常使用香草延迟融合战略来预测不同观点,在演示学习期间未能从几何角度探索补充信息。在本文中,我们引入了几何流网络(GFNet),以对准前方的方式探索不同观点之间的几何对应。具体地说,我们设计了一个新型的几何流模块(GFM),以便根据端对端学习计划下的几何关系双向地对准和传播不同观点之间的补充信息。我们对两种广泛使用的基准数据集(SemanticKITTI和nuscenes)进行了广泛的实验,以展示我们的GFNet对基于项目的点云层分分分分分解的有效性。具体地说,GFNet不仅大大提升了每个观点的绩效,而且还实现了现有的代码/CEOD-qual-qual-al-As-s-s a putal-dal-dal-commal-slational-dal-s-pal-pal-pal-s-s-s-s-slationalpal-s-s-slational-compalpal-s-pal-s-s-slgal-s-s-s-s-s-s-commut-s-s-s-s-s-s-slation-slation-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s