This work makes explicit the degrees of freedom involved in modeling the dynamics of a network, or some other first-order property of a network, such as a measurement function. In previous work, an admissible function in a network was constructed through the evaluation of what we called oracle components. These oracle components are defined through some minimal properties that they are expected to obey. This is a high-level description in the sense that it is not clear how one could design such an object. The goal is to obtain a low-level representation of these objects by unwrapping them into their degrees of freedom. To achieve this, we introduce two decompositions. The first one is the more intuitive one and allows us to define the important concept of coupling order. The second decomposition is built on top of the first one and is valid for the class of coupling components that have finite coupling order. Despite this requirement, we show that this is still a very useful tool for designing coupling components with infinite coupling orders, through a limit approach.
翻译:这项工作明确了在模拟网络动态或网络其他一阶属性时所涉及的自由度, 如测量功能 。 在先前的工作中, 通过评估我们称之为“ 甲骨文” 的元件, 网络中可允许的函数是通过评估我们称之为“ 甲骨文” 的元件来构建的 。 这些神器元件是通过他们应该服从的一些最小的属性来定义的 。 这是一个高层次的描述, 其含义是, 人们如何设计这样的物体并不十分清楚 。 目标是通过将这些物体解开到其自由度, 来获得这些物体的低层次代表。 为了实现这一点, 我们引入了两个分解。 第一个是更直观的元件, 并允许我们定义重要的组合顺序概念。 第二个分解功能建在第一个元件的顶部, 并且对于具有有限组合顺序的组合元件类别有效 。 尽管有这一要求, 我们表明, 这仍然是一个非常有用的工具, 通过限制方法, 来设计带有无限组合的组合的元件 。