We study one-sided matching problems where $n$ agents have preferences over $m$ objects and each of them need to be assigned to at most one object. Most work on such problems assume that the agents only have ordinal preferences and usually the goal in them is to compute a matching that satisfies some notion of economic efficiency. However, in reality, agents may have some preference intensities or cardinal utilities that, e.g., indicate that they like an object much more than another object, and not taking these into account can result in a loss in welfare. While one way to potentially account for these is to directly ask the agents for this information, such an elicitation process is cognitively demanding. Therefore, we focus on learning more about their cardinal preferences using simple threshold queries which ask an agent if they value an object greater than a certain value, and use this in turn to come up with algorithms that produce a matching that, for a particular economic notion $X$, satisfies $X$ and also achieves a good approximation to the optimal welfare among all matchings that satisfy $X$. We focus on several notions of economic efficiency, and look at both adaptive and non-adaptive algorithms. Overall, our results show how one can improve welfare by even non-adaptively asking the agents for just one bit of extra information per object.


翻译:我们研究的是一面匹配问题,即美元代理人的偏好大于百万美元对象,而每个代理人都需要分配到最多一个对象。关于这些问题的多数工作假设,代理人只拥有正统偏好,通常目的是计算出符合某种经济效率概念的匹配。然而,实际上,代理人可能有一些偏好强度或基本公用设施,例如,表明他们更喜欢一个对象而不是另一个对象,而没有考虑到这些因素,可能会造成福利损失。尽管可能考虑这些问题的一个方法就是直接要求代理人提供这一信息,但这种启发过程在认知上要求很高。因此,我们侧重于更多地了解他们的主要偏好,使用简单的门槛查询,即询问代理人是否认为一个对象的价值大于一定价值,然后用这种方法来得出一种匹配,例如,就某一特定经济概念而言,它们更喜欢一个物体,能满足美元X美元,并且也能够使所有符合X美元的最佳福利要求者之间的最佳福利。我们注重几个经济效率概念,而这种启发过程在认知上是要求一个适应性和非适应性的代理人如何用一种不适应性的方法来显示我们整个福利结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月9日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员