Task-based functional magnetic resonance imaging (task fMRI) is a non-invasive technique that allows identifying brain regions whose activity changes when individuals are asked to perform a given task. This contributes to the understanding of how the human brain is organized in functionally distinct subdivisions. Task fMRI experiments from high-resolution scans provide hundred of thousands of longitudinal signals for each individual, corresponding to measurements of brain activity over each voxel of the brain along the duration of the experiment. In this context, we propose some visualization techniques for high dimensional functional data relying on depth-based notions that allow for computationally efficient 2-dim representations of tfMRI data and that shed light on sample composition, outlier presence and individual variability. We believe that this step is crucial previously to any inferential approach willing to identify neuroscientific patterns across individuals, tasks and brain regions. We illustrate the proposed technique through a simulation study and demonstrate its application on a motor and language task fMRI experiment.
翻译:以任务为基础的功能磁共振成像(task fMRI)是一种非侵入性技术,它能够识别在要求个人执行某项任务时活动变化的大脑区域,有助于了解人类大脑是如何在功能上不同的分区组织起来的。高分辨率扫描的FMRI实验为每个人提供了成百上千个纵向信号,与试验持续期间对大脑每个福克斯的脑活动进行的测量相对应。在这方面,我们提议了高维功能数据的一些可视化技术,依靠深度概念,可以对tfMRI数据进行高效的二维显示,并揭示样本构成、外在存在和个人变异性。我们认为,这一步骤以前对于愿意确定个人、任务和脑区域神经科学模式的任何推断方法至关重要。我们通过模拟研究来说明拟议的技术,并展示其在运动和语言任务FMRI实验中的应用情况。