Task-based functional magnetic resonance imaging (task fMRI) is a non-invasive technique that allows identifying brain regions whose activity changes when individuals are asked to perform a given task. This contributes to the understanding of how the human brain is organized in functionally distinct subdivisions. Task fMRI experiments from high-resolution scans provide hundred of thousands of longitudinal signals for each individual, corresponding to measurements of brain activity over each voxel of the brain along the duration of the experiment. In this context, we propose some visualization techniques for high dimensional functional data relying on depth-based notions that allow for computationally efficient 2-dim representations of tfMRI data and that shed light on sample composition, outlier presence and individual variability. We believe that this step is crucial previously to any inferential approach willing to identify neuroscientific patterns across individuals, tasks and brain regions. We illustrate the proposed technique through a simulation study and demonstrate its application on a motor and language task fMRI experiment.


翻译:以任务为基础的功能磁共振成像(task fMRI)是一种非侵入性技术,它能够识别在要求个人执行某项任务时活动变化的大脑区域,有助于了解人类大脑是如何在功能上不同的分区组织起来的。高分辨率扫描的FMRI实验为每个人提供了成百上千个纵向信号,与试验持续期间对大脑每个福克斯的脑活动进行的测量相对应。在这方面,我们提议了高维功能数据的一些可视化技术,依靠深度概念,可以对tfMRI数据进行高效的二维显示,并揭示样本构成、外在存在和个人变异性。我们认为,这一步骤以前对于愿意确定个人、任务和脑区域神经科学模式的任何推断方法至关重要。我们通过模拟研究来说明拟议的技术,并展示其在运动和语言任务FMRI实验中的应用情况。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
One-Class Classification: A Survey
Arxiv
8+阅读 · 2021年1月8日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
A Compact Embedding for Facial Expression Similarity
Arxiv
5+阅读 · 2018年12月18日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
One-Class Classification: A Survey
Arxiv
8+阅读 · 2021年1月8日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
A Compact Embedding for Facial Expression Similarity
Arxiv
5+阅读 · 2018年12月18日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
6+阅读 · 2016年1月15日
Top
微信扫码咨询专知VIP会员