DNN-based face recognition models require large centrally aggregated face datasets for training. However, due to the growing data privacy concerns and legal restrictions, accessing and sharing face datasets has become exceedingly difficult. We propose FedFace, a federated learning (FL) framework for collaborative learning of face recognition models in a privacy-aware manner. FedFace utilizes the face images available on multiple clients to learn an accurate and generalizable face recognition model where the face images stored at each client are neither shared with other clients nor the central host and each client is a mobile device containing face images pertaining to only the owner of the device (one identity per client). Our experiments show the effectiveness of FedFace in enhancing the verification performance of pre-trained face recognition system on standard face verification benchmarks namely LFW, IJB-A, and IJB-C.
翻译:以DNN为基础的面部识别模型需要大量的中央综合面部识别模型用于培训,然而,由于数据隐私关切和法律限制越来越多,获取和共享面部数据集已变得极其困难。我们提议采用FedFace(FedFace)框架,即以隐私意识方式协作学习面部识别模型的联邦学习框架。FedFace(FLace)利用多个客户提供的面部图像学习一个准确和通用的面部识别模型,即每个客户储存的面部图像既不能与其他客户共享,也不能与其他客户共享,也不能与中央主机共享,每个客户都是包含仅与设备所有人(每个客户一个身份)相关的面部图像的移动设备。我们的实验显示FedFace(FedFace)在提高标准面部验证基准(即LFW、IJB-A和IJB-C)上预先培训面部识别系统的核查性能方面的有效性。