Detecting navigable space is a fundamental capability for mobile robots navigating in unknown or unmapped environments. In this work, we treat the visual navigable space segmentation as a scene decomposition problem and propose Polyline Segmentation Variational AutoEncoder Networks (PSV-Nets), a representation-learning-based framework to enable robots to learn the navigable space segmentation in an unsupervised manner. Current segmentation techniques heavily rely on supervised learning strategies which demand a large amount of pixel-level annotated images. In contrast, the proposed framework leverages a generative model - Variational AutoEncoder (VAE) and an AutoEncoder (AE) to learn a polyline representation that compactly outlines the desired navigable space boundary in an unsupervised way. We also propose a visual receding horizon planning method that uses the learned navigable space and a Scaled Euclidean Distance Field (SEDF) to achieve autonomous navigation without an explicit map. Through extensive experiments, we have validated that the proposed PSV-Nets can learn the visual navigable space with high accuracy, even without any single label. We also show that the prediction of the PSV-Nets can be further improved with a small number of labels (if available) and can significantly outperform the state-of-the-art fully supervised-learning-based segmentation methods.


翻译:检测导航空间是移动机器人在未知或未绘制图像的环境中航行的基本能力。 在这项工作中,我们把视觉导航空间部分作为场面分解问题处理,并提议多线分解自动编码网络(PSV-Nets),这是一个代表式学习框架,使机器人能够在不受监督的情况下学习导航空间部分。目前的分解技术在很大程度上依赖于有监督的学习战略,这些战略需要大量的像素水平附加注释的图像。相比之下,拟议框架利用了一种基因化模型 -- -- Variational AutoEncoder(VAE)和Auto Encoder(AE)来学习多线式代表,以不受监督的方式紧凑地描述所期望的可导航空间边界。我们还提议了一种视觉再现地平线规划方法,利用已学的导航空间和缩放的Euclidean远程场(SEDF)来在没有明确的地图的情况下实现自主导航。我们通过广泛的实验,验证了拟议的PSV-Net基域网基模型能够以高的精确度学习可视导航空间部分,我们还可以用任何单一的标签来充分展示。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
24+阅读 · 2021年6月25日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
Arxiv
5+阅读 · 2018年10月15日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员