Detecting navigable space is a fundamental capability for mobile robots navigating in unknown or unmapped environments. In this work, we treat the visual navigable space segmentation as a scene decomposition problem and propose Polyline Segmentation Variational AutoEncoder Networks (PSV-Nets), a representation-learning-based framework to enable robots to learn the navigable space segmentation in an unsupervised manner. Current segmentation techniques heavily rely on supervised learning strategies which demand a large amount of pixel-level annotated images. In contrast, the proposed framework leverages a generative model - Variational AutoEncoder (VAE) and an AutoEncoder (AE) to learn a polyline representation that compactly outlines the desired navigable space boundary in an unsupervised way. We also propose a visual receding horizon planning method that uses the learned navigable space and a Scaled Euclidean Distance Field (SEDF) to achieve autonomous navigation without an explicit map. Through extensive experiments, we have validated that the proposed PSV-Nets can learn the visual navigable space with high accuracy, even without any single label. We also show that the prediction of the PSV-Nets can be further improved with a small number of labels (if available) and can significantly outperform the state-of-the-art fully supervised-learning-based segmentation methods.
翻译:检测导航空间是移动机器人在未知或未绘制图像的环境中航行的基本能力。 在这项工作中,我们把视觉导航空间部分作为场面分解问题处理,并提议多线分解自动编码网络(PSV-Nets),这是一个代表式学习框架,使机器人能够在不受监督的情况下学习导航空间部分。目前的分解技术在很大程度上依赖于有监督的学习战略,这些战略需要大量的像素水平附加注释的图像。相比之下,拟议框架利用了一种基因化模型 -- -- Variational AutoEncoder(VAE)和Auto Encoder(AE)来学习多线式代表,以不受监督的方式紧凑地描述所期望的可导航空间边界。我们还提议了一种视觉再现地平线规划方法,利用已学的导航空间和缩放的Euclidean远程场(SEDF)来在没有明确的地图的情况下实现自主导航。我们通过广泛的实验,验证了拟议的PSV-Net基域网基模型能够以高的精确度学习可视导航空间部分,我们还可以用任何单一的标签来充分展示。