Purpose: To develop CADIA, a supervised deep learning model based on a region proposal network coupled with a false-positive reduction module for the detection and localization of intracranial aneurysms (IA) from computed tomography angiography (CTA), and to assess our model's performance to a similar detection network. Methods: In this retrospective study, we evaluated 1,216 patients from two separate institutions who underwent CT for the presence of saccular IA>=2.5 mm. A two-step model was implemented: a 3D region proposal network for initial aneurysm detection and 3D DenseNetsfor false-positive reduction and further determination of suspicious IA. Free-response receiver operative characteristics (FROC) curve and lesion-/patient-level performance at established false positive per volume (FPPV) were also performed. Fisher's exact test was used to compare with a similar available model. Results: CADIA's sensitivities at 0.25 and 1 FPPV were 63.9% and 77.5%, respectively. Our model's performance varied with size and location, and the best performance was achieved in IA between 5-10 mm and in those at anterior communicating artery, with sensitivities at 1 FPPV of 95.8% and 94%, respectively. Our model showed statistically higher patient-level accuracy, sensitivity, and specificity when compared to the available model at 0.25 FPPV and the best F-1 score (P<=0.001). At 1 FPPV threshold, our model showed better accuracy and specificity (P<=0.001) and equivalent sensitivity. Conclusions: CADIA outperformed a comparable network in the detection task of IA. The addition of a false-positive reduction module is a feasible step to improve the IA detection models.
翻译:为了开发CADIA, 一个基于区域建议网络的受监督的深层次学习模式, 以及一个用于检测和定位计算机断层血管动脉瘤的3D区域建议网络, 以及一个用于检测和确定可疑的IA型动脉动脉动的3D区域建议网络。 还进行了免费应答接收器操作性能(FROC)曲线和腐蚀/住院水平性能的确定为每卷假正值(FPPV), 方法:在本次回顾研究中,我们评估了来自两个不同的机构的1 216名病人,这些病人因出现显眼的IAA=2.5毫米而接受了CT。 实施了两步模式: 3D区域对动脉动感敏度检测和3D DenseNet用于检测和进一步确定可疑的IA型动脉动动脉动脉动脉动脉动脉动的准确度。 免费反应接收器动动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉动脉