We propose a new type of neural networks, Kronecker neural networks (KNNs), that form a general framework for neural networks with adaptive activation functions. KNNs employ the Kronecker product, which provides an efficient way of constructing a very wide network while keeping the number of parameters low. Our theoretical analysis reveals that under suitable conditions, KNNs induce a faster decay of the loss than that by the feed-forward networks. This is also empirically verified through a set of computational examples. Furthermore, under certain technical assumptions, we establish global convergence of gradient descent for KNNs. As a specific case, we propose the Rowdy activation function that is designed to get rid of any saturation region by injecting sinusoidal fluctuations, which include trainable parameters. The proposed Rowdy activation function can be employed in any neural network architecture like feed-forward neural networks, Recurrent neural networks, Convolutional neural networks etc. The effectiveness of KNNs with Rowdy activation is demonstrated through various computational experiments including function approximation using feed-forward neural networks, solution inference of partial differential equations using the physics-informed neural networks, and standard deep learning benchmark problems using convolutional and fully-connected neural networks.


翻译:我们提出一种新的神经网络,即Kronecker神经网络(KNNS),它构成具有适应性激活功能的神经网络总框架。Kronecker产品使用Kronecker产品,它提供了建造非常宽的网络的有效方法,同时保持低参数数量。我们的理论分析表明,在适当条件下,KNNS引起的损失衰减速度要快于供养向前网络的衰减速度。这也通过一系列计算实例得到经验的验证。此外,在某些技术假设下,我们为KNNS建立了全球梯度下降趋同。作为一个具体案例,我们提议了rody激活功能,目的是通过注射鼻线性波动消除任何饱和区,其中包括可训练的参数。拟议的Rondy激活功能可以在任何神经网络结构中应用,例如饲料向上神经网络、循环神经网络、革命神经网络等。通过各种计算实验,包括利用供养性向向上神经网络对调的功能进行近比对准,用物理基础网络和完全基础性神经网络进行部分差异式变换等的公式。

0
下载
关闭预览

相关内容

将若干个相关主题的“知识神经元网络”knn (1 ) , knn( 2 ) , knn( i ),,,,连接在一 起,组成“知识神经元网络系统”KNNS(Knowledge neural network system)。
专知会员服务
31+阅读 · 2021年6月12日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
52+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员