Expressing empathy is important in everyday conversations, and exploring how empathy arises is crucial in automatic response generation. Most previous approaches consider only a single factor that affects empathy. However, in practice, empathy generation and expression is a very complex and dynamic psychological process. A listener needs to find out events which cause a speaker's emotions (emotion cause extraction), project the events into some experience (knowledge extension), and express empathy in the most appropriate way (communication mechanism). To this end, we propose a novel approach, which integrates the three components - emotion cause, knowledge graph, and communication mechanism for empathetic response generation. Experimental results on the benchmark dataset demonstrate the effectiveness of our method and show that incorporating the key components generates more informative and empathetic responses.
翻译:表达同情心在日常对话中很重要,探索如何产生同情心在自动反应生成中至关重要。 以往大多数方法都只考虑影响同情心的单一因素。 但是,在实践中,同情心的产生和表达是一个非常复杂和动态的心理过程。 听众需要找出导致演讲者情绪(情感引发的提取)的事件,将事件投向一些经验(知识扩展),并以最适当的方式表达同情心(通信机制 ) 。 为此,我们提议一种新颖的方法,将情感原因、知识图表和同情反应生成的通信机制这三个组成部分结合起来。 基准数据集的实验结果显示了我们方法的有效性,并表明纳入关键组成部分会产生更多信息性和同情心的反应。