A transformed primal-dual (TPD) flow is developed for a class of nonlinear smooth saddle point system. The flow for the dual variable contains a Schur complement which is strongly convex. Exponential stability of the saddle point is obtained by showing the strong Lyapunov property. Several TPD iterations are derived by implicit Euler, explicit Euler, implicit-explicit and Gauss-Seidel methods with accelerated overrelaxation of the TPD flow. Generalized to the symmetric TPD iterations, linear convergence rate is preserved for convex-concave saddle point systems under assumptions that the regularized functions are strongly convex. The effectiveness of augmented Lagrangian methods can be explained as a regularization of the non-strongly convexity and a preconditioning for the Schur complement. The algorithm and convergence analysis depends crucially on appropriate inner products of the spaces for the primal variable and dual variable. A clear convergence analysis with nonlinear inexact inner solvers is also developed.
翻译:为一类非线性平滑马鞍系统开发了经改造的原始双向流动(TPD) 。 双变量的流程包含一个非常精细的Schur 补充物。 显示强大的 Lyapunov 属性可以实现马鞍点的指数稳定性。 由隐含的 Euler 、 显性 Euler、 隐含式解释和高斯- 赛德尔 方法以及加速过度松绑TPD 流的隐含 Euler 、 显性解释、 隐性解释和高斯- 赛德尔 方法衍生出若干TPD 。 将线性趋同率概括到对称 TPD 的 TPD 迭代法中, 在假设常规功能非常精密的情况下, 向 convex- cove 峰点系统保留线性趋同率 。 增强的拉格朗根方法的有效性可以解释为非强性共性交配和Schur 补充的前提条件。 算法和趋同性分析关键地取决于空间的适当内部原始变量和双重变量的内产的合适内产。 。 也开发了与非线性内解的清晰的趋和内解分析。 。 。