This paper proposes a new class of mass or energy conservative numerical schemes for the generalized Benjamin-Ono (BO) equation on the whole real line with arbitrarily high-order accuracy in time. The spatial discretization is achieved by the pseudo-spectral method with the rational basis functions, which can be implemented by the Fast Fourier transform (FFT) with the computational cost $\mathcal{O}( N\log(N))$. By reformulating the spatial discretized system into the different equivalent forms, either the spatial semi-discretized mass or energy can be preserved exactly under the continuous time flow. Combined with the symplectic Runge-Kutta, with or without the scalar auxiliary variable reformulation, the fully discrete energy or mass conservative scheme can be constructed with arbitrarily high-order temporal accuracy, respectively. Our numerical results show the conservation of the proposed schemes, and also the superior accuracy and stability to the non-conservative (Leap-frog) scheme.
翻译:本文为通用的Benjamin-Ono(BO)等式提出了一个新的质量或能源保守数字方案,整个实际线上采用任意高顺序精确度,空间离散利用假光谱方法实现,具有合理基础功能,可由快速傅里叶变换(FFT)实施,计算成本为$\mathcal{O}(N\log(N))美元。通过将空间离散系统重新配置为不同等式,空间半分解质量或能源可以在连续时间流下完全保存。与静电龙格-Kutta相结合,无论是否重新配有卡拉辅助变量,完全离散能源或大规模保守方案可以分别以任意高序时间精确度构建。我们的数字结果显示,拟议的计划得到了保护,非保守(Leap-frog)办法的高度准确性和稳定性也得到了保持。