Machine learning (ML) is an increasingly important scientific tool supporting decision making and knowledge generation in numerous fields. With this, it also becomes more and more important that the results of ML experiments are reproducible. Unfortunately, that often is not the case. Rather, ML, similar to many other disciplines, faces a reproducibility crisis. In this paper, we describe our goals and initial steps in supporting the end-to-end reproducibility of ML pipelines. We investigate which factors beyond the availability of source code and datasets influence reproducibility of ML experiments. We propose ways to apply FAIR data practices to ML workflows. We present our preliminary results on the role of our tool, ProvBook, in capturing and comparing provenance of ML experiments and their reproducibility using Jupyter Notebooks.


翻译:机器学习(ML)是一个日益重要的科学工具,用于支持许多领域的决策和知识生成。 有了这个工具,ML实验的结果也越来越重要。 不幸的是,情况往往并非如此。 相反,ML与其他许多学科相似,面临着复制危机。 在本文中,我们描述了支持ML管道端到端再复制的目标和初步步骤。我们调查了超出源代码和数据集的哪些因素影响ML实验的可复制性。我们提出了将FAIR数据实践应用于ML工作流程的方法。我们介绍了我们工具ProvBook在捕捉和比较ML实验的源代码及其利用Jupyter笔记本进行复制方面的作用的初步结果。

1
下载
关闭预览

相关内容

吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
151+阅读 · 2017年8月1日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员