Near-term quantum computers are expected to work in an environment where each operation is noisy, with no error correction. Therefore, quantum-circuit optimizers are applied to minimize the number of noisy operations. Today, physicists are constantly experimenting with novel devices and architectures. For every new physical substrate and for every modification of a quantum computer, we need to modify or rewrite major pieces of the optimizer to run successful experiments. In this paper, we present QUESO, an efficient approach for automatically synthesizing a quantum-circuit optimizer for a given quantum device. For instance, in 1.2 minutes, QUESO can synthesize an optimizer with high-probability correctness guarantees for IBM computers that significantly outperforms leading compilers, such as IBM's Qiskit and TKET, on the majority (85%) of the circuits in a diverse benchmark suite. A number of theoretical and algorithmic insights underlie QUESO: (1) An algebraic approach for representing rewrite rules and their semantics. This facilitates reasoning about complex symbolic rewrite rules that are beyond the scope of existing techniques. (2) A fast approach for probabilistically verifying equivalence of quantum circuits by reducing the problem to a special form of polynomial identity testing. (3) A novel probabilistic data structure, called a polynomial identity filter (PIF), for efficiently synthesizing rewrite rules. (4) A beam-search-based algorithm that efficiently applies the synthesized symbolic rewrite rules to optimize quantum circuits.
翻译:近期量子计算机的工作环境中,每个操作都存在噪声,没有纠错。因此,需要应用量子电路优化器来最小化噪声操作的数量。物理学家们不断尝试新颖的设备和架构。对于每个新的物理介质和每个修改的量子计算机,我们需要修改或重写优化器的主要部分以进行成功的实验。在本文中,我们提出了QUESO,这是一种有效的方法,可自动合成量子设备的量子电路优化器。例如,在1.2分钟内,QUESO可以为IBM计算机合成一个具有高概率正确性保证的优化器,显着优于主流编译器,如IBM的Qiskit和TKET,在多样化的基准测试套件中的大多数电路(达到85%)。QUESO背后有许多理论和算法洞见:(1)一种代数方法,用于表示重写规则及其语义。这有助于处理复杂的符号重写规则,这是超出现有技术范围的。 (2)一种快速方法,用于通过将问题约简为特殊形式的多项式恒等测试,概率地验证量子电路的等价性。 (3)一种新型概率数据结构,称为多项式恒等过滤器(PIF),用于有效合成重写规则。 (4)一种基于beam-search的算法,用于将合成的符号重写规则应用于优化量子电路。