Federated learning (FL) is recognized as a key enabling technology to provide intelligent services for future wireless networks and industrial systems with delay and privacy guarantees. However, the performance of wireless FL can be significantly degraded by Byzantine attack, such as data poisoning attack, model poisoning attack and free-riding attack. To design the Byzantine-resilient FL paradigm in wireless networks with limited radio resources, we propose a novel communication-efficient robust model aggregation scheme via over-the-air computation (AirComp). This is achieved by applying the Weiszfeld algorithm to obtain the smoothed geometric median aggregation against Byzantine attack. The additive structure of the Weiszfeld algorithm is further leveraged to match the signal superposition property of multiple-access channels via AirComp, thereby expediting the communication-efficient secure aggregation process of FL. Numerical results demonstrate the robustness against Byzantine devices and good learning performance of the proposed approach.
翻译:联邦学习(FL)被认为是为未来的无线网络和工业系统提供智能服务的关键赋能技术,具有延迟和隐私保障,然而,无线FL的性能会因Byzantine攻击,如数据中毒攻击、中毒攻击模型和自由驾驶攻击而大大降低,为了在无线电资源有限的无线网络中设计Byzantine抗逆FL范式,我们提议通过空中计算(AirComp),建立一个新型的通信效率强强的模型集成计划,通过使用Weiszfeld算法获得针对拜占廷攻击的平滑的几何中位集。Weiszfeld算法的添加结构进一步被利用,以匹配通过AirComp公司多通道的信号超定位特性,从而加快了FL的通信高效安全集成过程。数字结果表明,对Byzantine装置的抗力很强,拟议方法的学习表现良好。