Marine Saliency Segmentation (MSS) plays a pivotal role in various vision-based marine exploration tasks. However, existing marine segmentation techniques face the dilemma of object mislocalization and imprecise boundaries due to the complex underwater environment. Meanwhile, despite the impressive performance of diffusion models in visual segmentation, there remains potential to further leverage contextual semantics to enhance feature learning of region-level salient objects, thereby improving segmentation outcomes. Building on this insight, we propose DiffMSS, a novel marine saliency segmenter based on the diffusion model, which utilizes semantic knowledge distillation to guide the segmentation of marine salient objects. Specifically, we design a region-word similarity matching mechanism to identify salient terms at the word level from the text descriptions. These high-level semantic features guide the conditional feature learning network in generating salient and accurate diffusion conditions with semantic knowledge distillation. To further refine the segmentation of fine-grained structures in unique marine organisms, we develop the dedicated consensus deterministic sampling to suppress overconfident missegmentations. Comprehensive experiments demonstrate the superior performance of DiffMSS over state-of-the-art methods in both quantitative and qualitative evaluations.
翻译:暂无翻译