Model ensembles are becoming one of the most effective approaches for improving object detection performance already optimized for a single detector. Conventional methods directly fuse bounding boxes but typically fail to consider proposal qualities when combining detectors. This leads to a new problem of confidence discrepancy for the detector ensembles. The confidence has little effect on single detectors but significantly affects detector ensembles. To address this issue, we propose a novel ensemble called the Probabilistic Ranking Aware Ensemble (PRAE) that refines the confidence of bounding boxes from detectors. By simultaneously considering the category and the location on the same validation set, we obtain a more reliable confidence based on statistical probability. We can then rank the detected bounding boxes for assembly. We also introduce a bandit approach to address the confidence imbalance problem caused by the need to deal with different numbers of boxes at different confidence levels. We use our PRAE-based non-maximum suppression (P-NMS) to replace the conventional NMS method in ensemble learning. Experiments on the PASCAL VOC and COCO2017 datasets demonstrate that our PRAE method consistently outperforms state-of-the-art methods by significant margins.
翻译:模型集合正在成为提高单一探测器已优化的物体探测性能的最有效方法之一。 常规方法直接引信捆绑盒,但通常在合并探测器时不考虑建议质量。 这导致探测器集合点出现新的信任差异问题。 信任对单个探测器影响不大,但对探测器集合区影响很大。 为了解决这个问题, 我们提议了一个新型的组合, 称为“ 概率分级, 认识集合区( PRAE) ”, 来提高探测器对捆绑盒的信心。 同时考虑同一验证组的类别和位置, 我们获得基于统计概率的更可靠的信任。 然后, 我们可以对检测到的捆绑盒进行排序, 组装。 我们还采用一个团状方法来解决由于需要在不同信任级别处理不同数目的盒子而引起的信任不平衡问题。 我们用我们的基于PRAE的非最大抑制( P- NMS) 来取代常规的NMS 方法。 实验了PASACAL VOC 和 CO2017 数据集, 以统计概率为基础, 我们用显著的PRAE 系统方法持续地展示我们的PRAE 方法。