In this paper, we propose a framework for fast trajectory planning for unmanned aerial vehicles (UAVs). Our framework is reformulated from an existing bilevel optimization, in which the lower-level problem solves for the optimal trajectory with a fixed time allocation, whereas the upper-level problem updates the time allocation using analytical gradients. The lower-level problem incorporates the safety-set constraints (in the form of inequality constraints) and is cast as a convex quadratic program (QP). Our formulation modifies the lower-level QP by excluding the inequality constraints for the safety sets, which significantly reduces the computation time. The safety-set constraints are moved to the upper-level problem, where the feasible waypoints are updated together with the time allocation using analytical gradients enabled by the OptNet. We validate our approach in simulations, where our method's computation time scales linearly with respect to the number of safety sets, in contrast to the state-of-the-art that scales exponentially.
翻译:在本文中,我们提出了一种快速无人机轨迹规划的框架。我们的框架是由现有的双层优化改进而来,在下层问题中,通过固定时间分配确定最佳轨迹,而上层问题则使用解析梯度来更新时间分配。下层问题包括了安全集的约束(以不等式约束的形式),并被作为一个凸二次规划(QP)形式。我们的正问题修改了下层QP,将安全集的不等式约束排除,这可以显著降低计算时间。安全集的约束被移动到上层问题中,在此使用OptNet所提供的解析梯度更新可行的航点和时间分配。我们在模拟中验证了我们的方法,其中我们方法的计算时间与安全集的数量成线性规模,而相较于最先进的方法,后者其计算时间成指数规模。