As previous representations for reinforcement learning cannot effectively incorporate a human-intuitive understanding of the 3D environment, they usually suffer from sub-optimal performances. In this paper, we present Semantic-aware Neural Radiance Fields for Reinforcement Learning (SNeRL), which jointly optimizes semantic-aware neural radiance fields (NeRF) with a convolutional encoder to learn 3D-aware neural implicit representation from multi-view images. We introduce 3D semantic and distilled feature fields in parallel to the RGB radiance fields in NeRF to learn semantic and object-centric representation for reinforcement learning. SNeRL outperforms not only previous pixel-based representations but also recent 3D-aware representations both in model-free and model-based reinforcement learning.
翻译:由于以前关于强化学习的表述无法有效地纳入对3D环境的人类直觉理解,它们通常会受到次优性表现的影响。在本文件中,我们介绍了强化学习的语义-有觉神经辐射场(SneRL),该词用一个进化编码器共同优化了语义-有觉神经辐射场(NERF),以学习多视图像中3D-有觉神经隐含的3D表象。我们引入了3D语义和蒸馏地貌,与NERF的RGB弧形田平行,学习语义和以物体为中心的表象,以学习强化学习。SNERL不仅超越了先前的像素表示方式,而且最近还超越了在无模型和以模型为基础的强化学习中的3D觉表象。