Hamiltonian mechanics is one of the cornerstones of natural sciences. Recently there has been significant interest in learning Hamiltonian systems in a free-form way directly from trajectory data. Previous methods have tackled the problem of learning from many short, low-noise trajectories, but learning from a small number of long, noisy trajectories, whilst accounting for model uncertainty has not been addressed. In this work, we present a Gaussian process model for Hamiltonian systems with efficient decoupled parameterisation, and introduce an energy-conserving shooting method that allows robust inference from both short and long trajectories. We demonstrate the method's success in learning Hamiltonian systems in various data settings.
翻译:汉密尔顿机械学是自然科学的基石之一。 最近,人们非常关注以直接从轨迹数据中自由形式学习汉密尔顿系统。 以往的方法解决了从许多短、低噪音轨迹中学习的问题,但从少数长的、吵闹的轨迹中学习,而模型不确定性的计算却未得到解决。 在这项工作中,我们为汉密尔顿系统提出了一个高森进程模型,该模型具有高效的脱钩参数化,并引入了一种节能射击方法,从短轨和长轨中进行有力的推理。 我们展示了这种方法在各种数据环境中学习汉密尔顿系统的成功。</s>