The ratio of two Gaussians is useful in many contexts of statistical inference. We discuss statistically valid inference of the ratio under Differential Privacy (DP). We use the delta method to derive the asymptotic distribution of the ratio estimator and use the Gaussian mechanism to provide (epsilon, delta)-DP guarantees. Like many statistics, quantities involved in the inference of a ratio can be re-written as functions of sums, and sums are easy to work with for many reasons. In the context of DP, the sensitivity of a sum is easy to calculate. We focus on getting the correct coverage probability of 95\% confidence intervals (CIs) of the DP ratio estimator. Our simulations show that the no-correction method, which ignores the DP noise, gives CIs that are too narrow to provide proper coverage for small samples. In our specific simulation scenario, the coverage of 95% CIs can be as low as below 10%. We propose two methods to mitigate the under-coverage issue, one based on Monte Carlo simulation and the other based on analytical correction. We show that the CIs of our methods have much better coverage with reasonable privacy budgets. In addition, our methods can handle weighted data, when the weights are fixed and bounded.
翻译:2 Gausian 的比值在统计推论的许多背景下是有用的。 我们讨论不同隐私(DP)下比率的统计有效推论。 我们使用三角洲方法来得出比率估计器的无症状分布, 并使用高斯机制来提供( epsilon, delta)-DP的保障。 与许多统计数据一样, 比率推论所涉数量可以重写为总和函数, 并且由于许多原因, 金额很容易工作。 在DP方面, 一笔金额的敏感性很容易计算。 我们侧重于获得DP比率估测器95- 信任期( CIs) 的正确覆盖概率。 我们的模拟显示, 忽略了DP 噪音的不纠正方法, 使光线条线过窄, 无法为小样本提供适当覆盖。 在我们的具体模拟假设中, 95% CI 的覆盖率可以低于10% 。 我们建议两种方法来缓解下层问题, 一种基于蒙特卡洛 模拟, 另一种基于分析校准度, 我们的保密度分析法可以改进了我们的精确度预算。