We propose the nonlinear restricted additive Schwarz (RAS) preconditioning strategy to improve the convergence speed of limited memory quasi-Newton (QN) methods. We consider both "left-preconditioning" and "right-preconditioning" strategies. As the application of the nonlinear preconditioning changes the standard gradients and Hessians to their preconditioned counterparts, the standard secant pairs cannot be used to approximate the preconditioned Hessians. We discuss how to construct the secant pairs in the preconditioned QN framework. Finally, we demonstrate the robustness and efficiency of the preconditioned QN methods using numerical experiments.
翻译:我们提出了非线性限制添加剂施瓦兹(RAS)的先决条件性战略,以提高有限内存准牛顿(QN)方法的趋同速度。我们既考虑“左前科”战略,也考虑“右前科”战略。由于非线性先决条件的应用将标准梯度和赫西人改变为其前提性对应方,标准松散配对不能用来接近具有先决条件的赫西人。我们讨论如何在有先决条件的QN框架内构建分离配对。最后,我们展示了使用数字实验的前提条件性QN方法的稳健性和效率。