Variational Inference (VI) is a method that approximates a difficult-to-compute posterior density using better behaved distributional families. VI is an alternative to the already well-studied Markov chain Monte Carlo (MCMC) method of approximating densities. With each algorithm, there are of course benefits and drawbacks; does there exist a combination of the two that mitigates the flaws of both? We propose a method to combine Coordinate Ascent Variational Inference (CAVI) with MCMC. This new methodology, termed Hybrid CAVI, seeks to improve the sensitivity to initialization and convergence problems of CAVI by proposing an initialization using method of moments estimates obtained from a short MCMC burn-in period. Unlike CAVI, Hybrid CAVI proves to also be effective when the posterior is not from a conditionally conjugate exponential family.
翻译:变化推论(VI) 是一种方法,它使用行为良好的分布式家庭,近似于难以测算的后方密度。 VI 是已经研究周密的Markov链 Monte Carlo (MCMCC) 近似密度的方法的替代办法。 每种算法都有好处和缺点; 两种方法的结合是否减轻了两者的缺陷? 我们建议了一种方法,将协调振动推论(CAVI)与MCMC相结合。 这个称为混合CAVI的新方法,试图通过使用从短的MCC燃烧期获得的时间估计方法提出初始化方法,提高CAVI对初始化和趋同问题的敏感性。 与CAVI不同, 混合CAVI证明, 当后方并非来自有条件的同源指数式大家庭时, 混合CAVI 也有效 。