Recent applications of deep convolutional neural networks in medical imaging raise concerns about their interpretability. While most explainable deep learning applications use post hoc methods (such as GradCAM) to generate feature attribution maps, there is a new type of case-based reasoning models, namely ProtoPNet and its variants, which identify prototypes during training and compare input image patches with those prototypes. We propose the first medical prototype network (MProtoNet) to extend ProtoPNet to brain tumor classification with 3D multi-parametric magnetic resonance imaging (mpMRI) data. To address different requirements between 2D natural images and 3D mpMRIs especially in terms of localizing attention regions, a new attention module with soft masking and online-CAM loss is introduced. Soft masking helps sharpen attention maps, while online-CAM loss directly utilizes image-level labels when training the attention module. MProtoNet achieves statistically significant improvements in interpretability metrics of both correctness and localization coherence (with a best activation precision of $0.713\pm0.058$) without human-annotated labels during training, when compared with GradCAM and several ProtoPNet variants. The source code is available at https://github.com/aywi/mprotonet.
翻译:最近,在医学成像中广泛使用的深度卷积神经网络的应用引起了人们对其可解释性的关注。虽然大多数可解释的深度学习应用程序使用事后方法(例如GradCAM)生成特征归因映射,但有一种新型的基于案例推理模型,即ProtoPNet及其变体,其在训练期间识别原型并将输入图像补丁与这些原型进行比较。我们提出了第一个医学原型网络(MProtoNet),将ProtoPNet扩展到带有三维多参数磁共振成像(mpMRI)数据的脑肿瘤分类。为了解决在2D自然图像和3D mpMRI之间尤其在本地化注意区域方面的不同要求,引入了新的注意模块,其中包括软掩模和在线CAM损失。软掩模有助于锐化注意映射,而在线CAM损失直接使用图像级标签训练注意模块。与GradCAM和几个ProtoPNet变体相比,MProtoNet在没有人工标注标签的情况下在正确性和本地化一致性两方面的解释度量中取得了显著的改进(最佳激活精度为$0.713\pm0.058$)。源代码可在https://github.com/aywi/mprotonet上找到。