The present contribution proposes a thermodynamically consistent model for the simulation of the ductile damage. The model couples the phase field method of fracture to the Armstrong-Frederick plasticity model with kinematic hardening. The latter is particularly suitable for simulating the material behavior under a cyclic load. The model relies on the minimum principle of the dissipation potential. However, the application of this approach is challenging since potentials of coupled methods are defined in different spaces: The dissipation potential of the phase field model is expressed in terms of rates of internal variables, whereas the Armstrong-Frederick model proposes a formulation depending on thermodynamic forces. For this reason, a unique formulation requires the Legendre transformation of one of the potentials. The present work performs the transformation of the Armstrong-Frederick potential, such that final formulation is only expressed in the space of rates of internal variables. With the assumption for the free energy and the joint dissipation potential at hand, the derivation of evolution equations is straightforward. The application of the model is illustrated by selected numerical examples studying the material response for different load constellations and sample geometries. The paper provides a comparison with the experimental results as well.
翻译:目前的贡献提出了一个模拟粘结损害的热动力一致模型。模型配对了阿姆斯特朗-弗雷德里克塑形模型的相片场断裂法,具有运动式硬化作用。后者特别适合于模拟循环负荷下的物质行为。模型依靠的是消散潜力的最低原则。但是,采用这一方法具有挑战性,因为结合方法的潜力在不同空间得到界定:阶段字段模型的消散潜力以内部变量的速度表示,而阿姆斯特朗-弗雷德里克模型则根据热动力力量提出一种配方。为此,一种独特的配方要求对一种潜力进行图伦卓变换。目前的工作进行阿姆斯特朗-弗雷德里克潜力的转化,这种最后配方只以内部变量的速率空间表示。随着对自由能源的假设和手头联合消散潜力的假设,进化方程式的推算是直截的。模型的应用通过若干数字例子加以说明,这些例子研究不同载荷星座和样本地球图的物反应,作为实验结果提供论文的比较。