Deep Reinforcement Learning (DRL) is being increasingly applied to the problem of resource allocation for emerging System-on-Chip (SoC) applications, and has shown remarkable promises. In this paper, we introduce SoCRATES (SoC Resource AdapTivE Scheduler), an extremely efficient DRL-based SoC scheduler which maps a wide range of hierarchical jobs to heterogeneous resources within SoC using the Eclectic Interaction Matching (EIM) technique. It is noted that the majority of SoC resource management approaches have been targeting makespan minimization with fixed number of jobs in the system. In contrast, SoCRATES aims at minimizing average latency in a steady-state condition while assigning tasks in the ready queue to heterogeneous resources (processing elements). We first show that the latency-minimization-driven SoC applications operate high-frequency job workload and distributed/parallel job execution. We then demonstrate SoCRATES successfully addresses the challenge of concurrent observations caused by the task dependency inherent in the latency minimization objective. Extensive tests show that SoCRATES outperforms other existing neural and non-neural schedulers with as high as 38% gain in latency reduction under a variety of job types and incoming rates. The resulting model is also compact in size and has very favorable energy consumption behaviors, making it highly practical for deployment in future SoC systems with built-in neural accelerator.


翻译:深度强化学习(DRL)正越来越多地应用于新兴系统芯片(SOC)应用程序的资源分配问题,并展示了令人瞩目的承诺。在本文中,我们引入了SCRATES(SoC Resource AdapTivE 调度器),这是一个以DRL为基础的极为高效的SOC调度器,它利用电相匹配(EIM)技术,将一系列等级性工作映射到苏CL内部的多样化资源中。人们注意到,大部分 SoCRATES资源管理方法一直以系统固定数量的工作岗位为最小化目标。相比之下,SOCRATES的目标是在一个稳定状态条件下尽量减少平均延迟状态,同时为混合资源(处理元素)分配备急列中的任务。我们首先显示,以最小化驱动的 SoC应用程序运行高频工作工作量,并分布/平行工作执行。我们然后展示SOCRATES成功应对了由于在最小化目标中固有的任务依赖性而同时进行观测的挑战。广泛的测试显示,SoCRATES在稳定状态下最大限度地减少平均的悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮悬浮状态,同时在38,从而在高额部署中,从而在高额部署类型中,在高额部署中,在高额部署中,在高额部署中,在高额部署中,在不断递升降压压的弹性中取得高位。

0
下载
关闭预览

相关内容

古希腊哲学家,和其学生柏拉图及柏拉图的学生亚里士多德被并称为希腊三哲人。他被后人广泛认为是西方哲学的奠基者。 苏格拉底相信「理想存在于一个只有智者才能了解的世界」。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2020年3月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
4+阅读 · 2020年3月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年6月12日
Top
微信扫码咨询专知VIP会员