Motivated by crowdsourced computation, peer-grading, and recommendation systems, Braverman, Mao and Weinberg [STOC'16] studied the \emph{query} and \emph{round} complexity of fundamental problems such as finding the maximum (\textsc{max}), finding all elements above a certain value (\textsc{threshold-$v$}) or computing the top$-k$ elements (\textsc{Top}-$k$) in a noisy environment. For example, consider the task of selecting papers for a conference. This task is challenging due the crowdsourcing nature of peer reviews: the results of reviews are noisy and it is necessary to parallelize the review process as much as possible. We study the noisy value model and the noisy comparison model: In the \emph{noisy value model}, a reviewer is asked to evaluate a single element: "What is the value of paper $i$?" (\eg accept). In the \emph{noisy comparison model} (introduced in the seminal work of Feige, Peleg, Raghavan and Upfal [SICOMP'94]) a reviewer is asked to do a pairwise comparison: "Is paper $i$ better than paper $j$?" In this paper, we show optimal worst-case query complexity for the \textsc{max},\textsc{threshold-$v$} and \textsc{Top}-$k$ problems. For \textsc{max} and \textsc{Top}-$k$, we obtain optimal worst-case upper and lower bounds on the round vs query complexity in both models. For \textsc{threshold}-$v$, we obtain optimal query complexity and nearly-optimal round complexity, where $k$ is the size of the output) for both models. We then go beyond the worst-case and address the question of the importance of knowledge of the instance by providing, for a large range of parameters, instance-optimal algorithms with respect to the query complexity. Furthermore, we show that the value model is strictly easier than the comparison model.


翻译:由多方源计算、 同行升级、 推荐系统驱动, 布拉弗曼、 Mao 和 Weinberg [STOC'16] 研究了 emph{query} 和\ emph{roum} 等基本问题的复杂性, 例如找到最大值(\ textsc{ max} ), 找到超过一定值的所有元素(\ textsc{thresslock- $v$ ), 或者在一个噪音环境中计算最高值元素(\ textsc{ Top} 和 Weinberg$ 。 例如, 考虑为会议选择文件的任务。 由于同行审评的众包性质, 此任务具有挑战性 : 审评的结果是吵闹的, 有必要尽可能地平行的审查进程。 我们的研究模式 (\ emphexfax) $ 的模型是“ 最坏的值, 最坏的值是我们最坏的值 ” 。 (ege) 和最坏的文本 。 在\ rode} 模型中, 最坏的, 最坏的 最坏的值 显示的 和最坏的 更难的 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
3+阅读 · 2018年4月11日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员