In applications such as object tracking, time-series data inevitably carry missing observations. Following the success of deep learning-based models for various sequence learning tasks, these models increasingly replace classic approaches in object tracking applications for inferring the object motions state. While traditional tracking approaches can deal with missing observations, most of their deep counterparts are, by default, not suited for this. Towards this end, this paper introduces a transformer-based approach for handling missing observations in variable input length trajectory data. The model is formed indirectly by successively increasing the complexity of the demanded inference tasks. Starting from reproducing noise-free trajectories, the model then learns to infer trajectories from noisy inputs. By providing missing tokens, binary-encoded missing events, the model learns to in-attend to missing data and infers a complete trajectory conditioned on the remaining inputs. In the case of a sequence of successive missing events, the model then acts as a pure prediction model. The model's abilities are demonstrated on synthetic data and real-world data reflecting prototypical object tracking scenarios.


翻译:在天体跟踪等应用中,时间序列数据不可避免地会丢失观测结果。在各种序列学习任务以深层次学习为基础的模型成功之后,这些模型逐渐取代了用于推断物体运动状态的物体跟踪应用的经典方法。传统跟踪方法可以处理缺失的观测结果,但大多数深海对等方法默认不适于这样做。为此,本文件引入了一种基于变压器的方法,用于处理变量输入长度轨道数据中缺失的观测结果。该模型通过不断增加所需推断任务的复杂性而间接形成。从生成无噪音轨迹开始,该模型然后学习从噪音输入中推断轨迹。通过提供缺失的标语、二进码编码的缺失事件,模型学习了对缺失数据的注意,并推断出以剩余输入为条件的完整轨迹。如果是一系列连续失踪事件,模型随后起到纯粹的预测模型作用。该模型的能力通过合成数据和反映原型物体跟踪情景的现实数据得到展示。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员