With the increase of intelligent devices leading to increasing demand for traffic, traffic offloading has become a challenging problem. The space-air-ground integrated network (SAGIN) is a superior network architecture to solve this problem. The existing research on SAGIN traffic offloading only considers the single-layer satellite network in the space network. To further expand the resource pool of traffic offloading in SAGIN, we extend the single-layer satellite network into a double-layer satellite network composed of low-orbit satellites (LEO) and high-orbit satellites (GEO). And re-model a four-layer SAGIN architecture consisting of the ground network, the air network, LEO and GEO. Furthermore, we propose a novel Federated Soft Actor-Critic (FeSAC) traffic offloading method with positive environmental exploration to accommodate this dynamic and complex four-layer SAGIN architecture. The FeSAC method uses federated learning to train traffic offloading nodes and then aggregate the training results to obtain the best traffic offloading strategy. The simulation results show that under the four-layer SAGIN, our proposed method can better adapt to the network environment changes by nodes mobility and is better than the existing traffic offloading methods in throughput, packet loss, and transmission delay.
翻译:随着智能装置的增加导致对交通需求的增加,交通卸载已成为一个具有挑战性的问题。空空地综合网络(SAGIN)是解决这一问题的高级网络架构。关于SAGIN卸载的现有研究只考虑空间网络中的单层卫星网络。为了进一步扩大SAGIN卸载的运输资源库,我们将单层卫星网络扩大到由低轨道卫星(LEO)和高轨道卫星(GEO)组成的双层卫星网络。并重新打造由地面网络、航空网络、低地轨道和GEO组成的四层SAGIN架构。此外,我们提议采用新型的FIFOft Acor-Critic(FeSAC)卸载方式,同时进行积极的环境探索,以适应这一动态和复杂的四层SAGIN架构。FESAC方法利用电磁学习来培训交通卸载节点和高轨道卫星(GEOO),然后汇总培训结果,以获得最佳的交通卸载战略。模拟结果表明,在四层SAGIN网络下,我们拟议的运输流流流和延迟运输方法比现有运输速度更好适应于现有运输网络的环境变化。