Consider the empirical autocovariance matrix at a given non-zero time lag based on observations from a multivariate complex Gaussian stationary time series. The spectral analysis of these autocovariance matrices can be useful in certain statistical problems, such as those related to testing for white noise. We study the behavior of their spectral measures in the asymptotic regime where the time series dimension and the observation window length both grow to infinity, and at the same rate. Following a general framework in the field of the spectral analysis of large random non-Hermitian matrices, at first the probabilistic behavior of the small singular values of the shifted versions of the autocovariance matrix are obtained. This is then used to infer about the large sample behaviour of the empirical spectral measure of the autocovariance matrices at any lag. Matrix orthogonal polynomials on the unit circle play a crucial role in our study.
翻译:根据多变量复合高斯固定时间序列的观测结果,在给定的非零时差中考虑实验性自动矩阵。这些自动变量矩阵的光谱分析在某些统计问题上可能有用,例如与测试白噪音有关的问题。我们在时间序列尺寸和观测窗口长度都发展到无限性的无线系统研究其光谱测量方法的行为,并以同样的速度进行。在对大型随机非赫米蒂矩阵的光谱分析领域遵循一个总体框架之后,首先获得了自变量矩阵变化版本的微小单数值的概率性行为。然后,我们用这种方法来推断任何时差时差的自动变量矩阵实验性光谱测量方法的大型样本行为。单位圆上的矩阵或多光学多光学模型在我们的研究中发挥着关键作用。