项目名称: 城市轨道交通中直线感应电机的非参数建模与反步最优控制研究

项目编号: No.50807004

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 环境科学、安全科学

项目作者: 吕刚

作者单位: 北京交通大学

项目金额: 20万元

中文摘要: 直线电机城市轨道交通系统是新型的资源节约型轨道交通模式,直线感应电机传动控制是该系统的核心。本项目用辨识技术、非参数建模方法、非线性控制以及最优化理论,研究直观、易用、准确的直线感应电机模型与强鲁棒、高性能、效率最优的控制策略。主要内容:[1]明确直线感应电机在城轨交通列车中的特殊性,将系统辨识技术与神经网络有机结合,提出混合非线性自回归神经网络建立该电机模型的方法,此方法具有强动态逼近和自动辨识模型阶次能力。[2]研究电机气隙变化、次级电阻突变和未建模边缘效应对控制系统的影响,用反步法探索适用于直线感应电机特有突变扰动的自适应律与鲁棒控制律。[3]将列车牵引计算、直线电机列车驱动特点与最优化理论结合,探讨不同运行区段与牵引工况下控制量的优化,提出整个牵引过程的效率最优控制。项目拓宽了直线感应电机建模与控制的研究方法,对进一步建立高效、立体、环保和低造价的直线电机城市轨道交通系统奠定基础。

中文关键词: 城市轨道交通;直线感应电机;反步最优控制;非参数模型

英文摘要: The linear motor urban rail transit is resource-efficient transit model and the traction control system for LIM is key technology in the metro vehicle. The parameter estimation technique, nonparametric modeling method, nonlinear control and optimization theory are applied to study the intuitionistic accuracy model for LIM and advanced control which is highly robust and efficiency optimization. Firstly, Based on the character of the LIM in urban rail transit , parameter estimation technique is mixed into the neural networks of the nonlinear autoregressive with exogenous inputs, and then the networks can identify motor’s order automatically and have strong approximate ability. Secondly, influence on the control system is studied when secondary resistance varies suddenly and motor airgap changes. Then adaptive law and robust control law used in the linear induction motor in urban rail transit is studied. Finally, calculations of train traction, linear induction motor and optimal theory are used to implement efficiency optimization in different traction working condition. The project broadens research methods for the linear induction motor and lays the foundation of the linear induction motor urban rail transit.

英文关键词: Urban Rail Transit; Linear InductionMotor; Backstepping Optimal Control; Nonparametric Modeling

成为VIP会员查看完整内容
0

相关内容

专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
25+阅读 · 2021年4月2日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
特斯拉首席设计师150页PPT详解其全自动驾驶芯片
智能交通技术
14+阅读 · 2019年5月1日
【AGV】仓库内多AGV协作的全局路径规划算法的研究
产业智能官
27+阅读 · 2018年11月10日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关主题
相关VIP内容
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
25+阅读 · 2021年4月2日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员