In this paper, we tackle the problem of flying a quadrotor using time-optimal control policies that can be replanned online when the environment changes or when encountering unknown disturbances. This problem is challenging as the time-optimal trajectories that consider the full quadrotor dynamics are computationally expensive to generate (order of minutes or even hours). We introduce a sampling-based method for efficient generation of time-optimal paths of a point-mass model. These paths are then tracked using a Model Predictive Contouring Control approach that considers the full quadrotor dynamics and the single rotor thrust limits. Our combined approach is able to run in real-time, being the first time-optimal method that is able to adapt to changes on-the-fly. We showcase our approach's adaption capabilities by flying a quadrotor at more than 60 km/h in a racing track where gates are moving. Additionally, we show that our online replanning approach can cope with strong disturbances caused by winds of up to 68 km/h.
翻译:在本文中,我们用时间最佳的控制政策来解决飞行一个二次钻探器的问题,在环境变化或遇到未知的扰动时,这种控制政策可以在网上重新规划。这个问题具有挑战性,因为考虑到全二次钻探动态的时间最佳轨迹在计算上非常昂贵(按分钟或甚至按小时排列)。我们引入了一种基于取样的方法,以便高效生成一个点质量模型的时间最佳路径。然后,利用一种模型预测性预测性孔径控制方法跟踪这些路径,该方法考虑到全次二次钻探动态和单次转子推进极限。我们的综合方法能够实时运行,这是能够适应全场变化的第一种时间最佳方法。我们展示了我们方法的适应能力,在大门移动的赛道上飞行一个超过60公里/小时的二次钻探器。此外,我们展示了我们的在线再规划方法能够应对68公里/小时的风造成的强烈扰动。